


2014 Marking Scheme

Grade Awarded	Mark Required (/100)	% candidates achieving grade
A	69+	29.5%
В	58+	23.7%
С	48+	19.7%
D	43+	7.9%
No award	<43	19.3%

Section:	Multiple Cho	ice	Extended A	nswer	Assignment	
Average Mark:	13.9	/20	32.1	/60	12.3	/20

2014 National 5 Chemistry Marking Scheme									
MC Qu	Answer	% Pupils Correct	Reasoning						
1	A	91	rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{60-0}{20-0}$ = 3 cm ³ s ⁻¹						
2	D	83	Nolecule contains 2×H, 1×Br and 1×Cl ∴ molecule is not chiral SB Molecule contains 3×H and 1×Br ∴ molecule is not chiral NC Molecule contains 2×H, 1×I and 1×Cl ∴ molecule is not chiral ND Molecule contains 1×H, 1×Br, 1×I and 1×Cl ∴ molecule is chiral						
3	A	51	Phosphate PO4 ³⁻ is listed in data booklet page 8 Total negative charge in Zn ₃ (PO4) ₂ formula is 6- as there are two phosphate ions All ionic compounds are neutral over all so the total positive charge must be 6+ Total positive charge in the 3 zinc ions = 6+ Positive charge on each zinc ion = ⁶⁺ / ₃ = 2+						
4	С	89	Fe_2O_3 + CO \rightarrow Fe + CO_2 Fe: 2xFe before arrow but 1xFe after arrow double Fe after arrow Fe_2O_3 + CO \rightarrow $2Fe$ + CO_2 O: 4xO before arrow but 2xO after arrow double CO_2 after arrow Fe_2O_3 + CO \rightarrow $2Fe$ + $2CO_2$ C: 1xC before arrow but 2xC after arrow double CO before arrow Fe_2O_3 + $2CO$ \rightarrow $2Fe$ + $2CO_2$ O: 5xO before arrow but 4xO after arrow increase CO to 3 before arrow Fe_2O_3 + $3CO$ \rightarrow $2Fe$ + $2CO_2$ C: 3xC before arrow but 2xFe after arrow increase CO_2 to 3 after arrow Fe_2O_3 + $3CO$ \rightarrow $2Fe$ + $3CO_2$						
5	С	75	 If a contain a contain both hydrogen and hydroxide solutions All aqueous solutions contain both hydrogen and hydroxide solutions A contain more hydrogen ions than hydroxide ions A contain more hydroxide ions than hydroxide ions 						
6	A	59	 A calcium oxide is a soluble metal oxide which dissolves to form an alkali B nickel oxide is a non-soluble metal oxide so has no effect on pH C nitrogen dioxide is a soluble non-metal oxide and dissolves to form an acid S sulphur dioxide is a soluble non-metal oxide and dissolves to form an acid 						
7	D	82	 A formed by the neutralisation of calcium hydroxide and nitric acid B formed by the neutralisation of sodium hydroxide and hydrochloric acid C formed by the neutralisation of potassium hydroxide and sulphuric acid D magnesium hydroxide cannot be made by the neutralisation of an acid 						
8	A	88	Spectator ions appear chemically unchanged on both sides of a chemical equation: K^* appears on both sides of equation $H^*_{(aq)} + NO_3^{(aq)} + K^*_{(aq)} + OH^{(aq)} \rightarrow K^*_{(aq)} + NO_3^{(aq)} + H_2O_{(l)}$ NO_3^- appears on both sides of equation						

9	С	87	Cyclohexane is a 6 carbon cycloalkane with a ring of carbons inside it H-C H-C H-C H H-C H H-C H							
10	В	83	A longest chain in structure is 4 carbons \therefore name must end in butane IB 2-methylbutane has 4 carbons in main chain and methyl CH_3 - group on C_2 IC methyl CH_3 - group is on C_2 from right hand side \therefore 2-methyl at start of name ID 2-methylpentane would contain 6 carbons in total							
11	С	77	A this would be a comparison of side group position on octane number B there is no comparison to be made with this selection IC butane, pentane and hexane would be a valid comparison of chain length D there is no comparison to be made with this selection							
12	В	40	 A reaction would form 1-bromobutane and 2-bromobutane B reaction would form 2-bromobutane only C reaction would form 1-bromopentane and 2-bromopentane D reaction would form 2-bromobutane and 3-bromobutane 							
13	С	88	AlcoholPropan-1-olPropan-2-olButan-1-olButan-2-olBoiling Point97°C82°C118°C100°C							
14	С	47	 ▲ A energy being required to start a reaction does indicate either exo/endothermic ▲ B heat being given off indicates an exothermic reaction ☑ C A temperature drop during a reaction indicates an endothermic reaction ▲ D A temperature rise during a reaction indicates an exothermic reaction 							
15		75	Potassium Potassium Sodium Calcium Aluminium Aluminium Aluminium Aluminium Aluminium Blatinum							
15	A	15	Reaction With OxygenBurn In Oxygen to Form Metal OxideSlowly ReactNo ReactionWith OxygenWith OxygenWith Oxygen							
			ReactionFast ReactionSlow Reaction With WaterNo Reaction withWith WaterWith WaterFaster Reaction With SteamWater or Steam							
			Reaction Violent Reaction React With Slow No Reaction With With Acids With dilute acids dilute acids Reaction dilute acids							
			Method Electrolysis Heat With Carbon Heat Alone							
16	D	73	Metals Made This Way Potassium Sodium Zinc Iron Mercury Silver Magnesium Aluminium Calcium Nickel Tin Gold Platinum Reason most reactive metals medium reactive metals least reactive metals least reactive metals							
			$H_2O(l) + SO_3^{2^-}(aq) \rightarrow SO_4^{2^-}(aq) + 2H^+(aq) + 2e^-$							
17	В	55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
			Add $0 + 2'$ (cancelling e ⁻) H ₂ O(1) + SO ₃ ²⁻ (aq) + 2Fe ³⁺ (aq) \rightarrow SO ₄ ²⁻ (aq) + 2H ⁺ (aq) + 2Fe ²⁺ (aq)							

201	4 National	5 Chemistry Marking Scheme						
Long Qu	Answer	Reasoning						
1a	Repulsion/deflection by (positive) nucleus	Positive (alpha) particles mainly travel straight through the layer of gold. Some of the positive (alpha) particles travel close to the nuclei of the gold atoms. The nuclei of the gold atoms are also positive and deflect the passing positive (alpha) particles by repulsion of positives charges.						
1b(i)	79 79 118	Number of protons= atomic number= 79Number of electrons= atomic number - charge= 79 - 0= 79Number of neutrons= mass no - atomic no.= 197 - 79= 118						
1b(ii)	Answer from:	atomic number Same number of protons but different number of neutrons						
2a	Covalent Network Ionic Lattice Metallic Lattice Discrete Covalent Molecular	Bonding Type Features of Bonding Type Covalent Network Substances with covalent bonding do not conduct electricity in any state. Covalent networks have very high melting points as covalent bonds in network must be broken before melting can take place Ionic Lattice Ionic compounds are all solids at room temperature with high mpt. Ionic compounds do not conduct as solids as ions are not free to move but conduct electricity when molten or in solution as the ions become free to move. Metallic Lattice All metallic substances conduct as solids or liquids. Metals have a range of melting point ranging from low to high e.g. mercury mpt = -39°C and iron mpt=1538°C Discrete Covalent Molecular Substances with covalent bonding do not conduct electricity in any state. As there are weak bonds between molecules, melting and boiling points are low as there are no strong bonds to be broken between molecules.						
2b	Electrons are delocalised	Graphene is made of carbon. Carbon has 4 outer electrons but in graphene only 3 of these electrons are used up in covalent bonds. The 4 th electron is delocalised and able to jump from carbon atom to carbon atom allowing the conduction of electricity across grapheme.						
3a	Humans cannot store potassium	Problem Solving: Retrieval of information from written passage						
3b	0.022 mol	From passage: 0.86g of potassium in 100g of raisins no. of mol = $\frac{mass}{gfm}$ = $\frac{0.86}{39}$ = 0.022 mol						
3с	Lilac	ElementBariumCalciumCopperLithiumPotassiumSodiumStrontiumIonBa²+Ca²+Cu²+Li*K*Na*Sr²+Flame Colourgreenorange-redblue-greenredlilacyellowred						
3d	KNO3	Write down Valency below each ion's symbolPut in Cross-over ArrowsFollow arrows and cancel down to get formulaKNO3^-KNO3^-1111						
4a	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
4b	Addition	Polymerisation Description Addition C=C double bonds in monomers join together to form a long chain of C-C single bonds. Condensation Water molecules are removed as monomers join together to make larger polymer.						

		Radiatio	n Stopped by	Charge	Atomic	Number	Mass Number	
50	Alpha	Alpha	Paper	Positive	, tronne	2	4	
5α	Alpha	Beta	Aluminium	Negative	-1		0	
		Gamma	lead	No charge	1		s a wave not a particle	<u> </u>
				Time (days) 0	Fract 1	ion 100%		
5b	$\frac{1}{4}$			8	1 1 2	50%		
				16	1 4	25%		
5.	Calina	Mass num	per of X	= 28 - 4	= 24			
5c	Sodium	Atomic number of X = 13 - 2 = 11 ∴ Element 11 = sodium						
		3 mark	answer	2 m	ark answ	er	1 mark answe	r
	Onen	Demonstrates a	good	Demonstrate	es a <mark>reasonab</mark>	e	Demonstrates a <u>limited</u>	
	Open	understanding o involved. A good	comprehension of	involved, mai	ig of the cher (ing some	nistry	understanding of the chemi involved. The candidate has	
6	Question Answer	the chemistry h logically correct	•) which are re 1, showing tha		some statement(s) which ar relevant to the situation, sh	
	to include:	statement of th	e principles	problem is u	-		that at least a little of the	
		involved and the these to respond					chemistry within the proble understood.	m is
Tam	Haber Process	L 1.			iron	atalyst		
7a (i)	FILDER FILDCESS	N	trogen +	Hydroge	en <u></u>	••••••	- Ammonia	
		\square	$\langle \rangle$	\frown				
			N (H)		\frown		
7 a(ii)	Diagram showing:				or	(нф	N BH)	
/ ((1))				\smile		\bigcirc		
			H				(\mathbf{n})	
			\smile					
	nitrogen							
	monoxide	Arrow pointing from nitrogen monoxide produced by the						
7b(i)								
7 D(1)		absorber at the bottom of diagram leading to the nitrogen						
	nitrogen	monoxide produced by the reactor.						
	monoxide							
		Nitric aci	d is made l	oy dissolv	vina niti	roaen	dioxide in water	' to
7b(ii)	Water or H2O	Nitric acid is made by dissolving nitrogen dioxide in water to form nitric acid. Some nitrogen monoxide is also formed						
		during the reaction which is recycled back into the process.						
-	N N N N	auring the reaction which is recycled back into the process.						
7 c (i)	Neutralisation	Neutralisa	tion: Acid +	Metal Hy	'droxide		→ Salt + Water	
7	A	Place poto	ssium nitr	ate solut	ion in a	n evap	oration basin an	ıd
7c(ii)	Answer to include:	boil dry using a Bunsen burner						
90	One answer from:		•					
<u>8a</u>	One unswer Trom:	Perfumes	Invouring	12 OL. 2010	enis			
8b(i)	hydroxyl	The -OH	group of tl	ne hydro:	xyl grou	ıp.		
		Correct C5H11OH diagram of:						
		pentan-1-ol		pentan-2-ol			pentan-3-ol	
				•			•	
8b(ii)	Any structure from:	2-methylbutan-1-ol			2,2-dimethylpropan-1-ol			
= = ()		2-m	-2-ol 3-methylbutan-2-ol			hylbutan-2-ol		
		2-methylbutan-2-ol3-methylbutan-2-olNB: diagram must be different from 3-methylbutan-1-ol in guestion and not a						
		redrawing of			•			^

r		Г <u> </u>				1		
8b(iii)	CnH2n+1COOH or CnH2n+1CO2H	H-C OH methanoic acid HCOOH where n=0: C _n H _{2n+1} COOH		H O H C C C H OH ethanoic acid CH_3COOH where n=1: $C_nH_{2n+1}COOH$		$\begin{array}{c} H & H & O \\ H - C - C - C & \\ H & H & OH \\ propanoic acid \\ \hline C_2 H_5 COOH \\ \hline \end{array}$ where n=2: $C_n H_{2n+1} COOH$		
8c	X= ethanol Y= propanoic acid	Problem Solvi	Problem Solving: Deduction from information in a tabl					
9a		They have similar chemical properties They have the same molecular formula The have the same general formula They have the same physical properties The have the same formula mass	 ✓ have Prop ✓ All a Alka e.g. gfm 	Propane and butane are both members of the alkane family an have the same chemical properties. Propane is C_3H_8 and Butane is C_4H_{10} All alkanes have the general formula C_nH_{2n+2} Alkanes have gradually changing physical properties e.g. bpt of propane = -42° C and bpt of butane = -1° C gfm propane C_3H_8 = 44g gfm butane C_4H_{10} = 58g				
9b	Answer to include:	Butane C4H10 The larger th (Higher would	e moleo	cules the hi	gher the	boiling po	int due to	
9с	3135	Eh = Energy = Energy = Energy =	spec	c × cific heat apacity × 4.18 × 35kJ	m ^{mass} 25		ΔT change in temperature 30	
9d	SO2 produced or Acid Rain gas formed	Sulphur atoms in compound will burn to form sulphur dioxide Sulphur dioxide dissolves in rain water in the atmosphere to form sulphurous acid.						
10a(i)	Increase in number of carbons gives increase in flash point	Problem Solvin	g: Form	ing a conclus	sion from t	able of inf	ormation	
10a(ii)	48°C-50°C	Alkane Flash Point (°C) Difference Prediction	Hexane -23 -23 -23	Heptane _{C7H16} -4 9°C 174 -	Octane <u>CosHis</u> 13 20 - 18	Nonane C9H20 31 0°C 17°C -	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \rightarrow 19^{\circ}C \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	
10Ь	99g	gfm C9H20 = (9×12)+ C9H20 + 1mol 0.25mol gfm CO2 = (1×12)+(2 r	no o 1402 ×16) = 12+3	$f mol = \frac{mass}{gfm}$	9 CO 2 + 2 9mol .25mol	10H₂O		
11a	$2Cl^{-} \rightarrow Cl_{2} + 2e^{-}$	2Cl ⁻ Chloride Cl ⁻ ions are a as chloride ions are pu the fuel cell.	reactant mped into		Chlorine Cl2 gas i product as it em from the fuel	t is the C erges ele	2e - Oxidation: I ⁻ ions must lose ctrons to become neutral	

			مالحم معالم		+ + +	ation konnoning			
		Solution X is the other product of the reaction happening							
116.00		around the negative electrode.							
11b(i)	sodium hydroxide	• Sodium ions are crossing the membrane into the right hand side							
		 Water is splitting into H⁺ ions and OH⁻ ions 							
			• 2H ⁺ + 2e ⁻ → H ₂ leaving OH ⁻ ions behind Hydrogen H ₂ gas burns cleanly to form water H ₂ O. Hydrogen can then be						
	It is renewable or			•		. Hydrogen can then be newable fuel. As there			
11b(ii)	no CO2/greenhouse	5		5	, 5	vill be produces and no			
	gases produced	carbon dioxide	•						
	,0	Eleme			•	Element Makes			
4.4		Carbo		4		4			
11c		Охуд	en 6	2		2			
	°CI	Chlori	ne 7	1		1			
		Metal ores a	re compo	ounds of r	netals and t	he metals are in			
10			•			e turned back in			
12a	Reduction		•						
		atoms again be reduction where electrons are gained by the positive ions e.g. $Mg^{2+} + 2e^- \rightarrow Mg$							
101	70%								
12b	70%	% Fe =	% Fe = $\frac{\text{total mass of Fe}}{\text{gfm Fe}_2O_3}$ x100 = $\frac{(2x56)}{(2x56)+(3x16)}$ x100 = $\frac{112}{160}$ x100 = 70%						
		Method	Electro	olysis	Heat With Carb	oon Heat Alone			
12c	(molten)	Metals Made	Potassium Lithium	Sodium Calcium	Zinc Iron Nickel Tin	Mercury Silver			
ILC	Electrolysis	This Way		Aluminium	Lead Copper	r Gold Platinum			
		Reason most reactive metals medium reactive metals			tals least reactive metals				
	_	A		15.9 +	+ 16.1 _ 32	2.0 = 16.0 cm ³			
13a	16cm ³	Average Volume = $\frac{15.9 + 16.1}{2} = \frac{32.0}{2} = 16.0 \text{ cm}^3$							
		NB: Ignore rough titre in the calculation of the average volume as it is inaccurate n o. of mol = volume × concentration = 0.016 litres × 0.1 mol l ⁻¹ = 0.0016 mol							
		$2HCI + Na_2CO_3 \longrightarrow 2NaCI + CO_2 + H_2O$							
13b	0.08 mol l ⁻¹	2mol 1mol							
		0.0016mc	0.00	DO8mol n o. of mol	0.0008 m				
		c oncer	itration = -	volume	= <u>0.0000 m</u> 0.01 litre				
		3 mark ai	nswer	2 mark answer		1 mark answer			
	Onen	Demonstrates a good		Demonstrates a <u>reasonable</u>		Demonstrates a <u>limited</u>			
1 4	Open	understanding of the chemistry involved. A good comprehension of		understanding of involved, making	understanding of the chemistry involved. The candidate has made				
14	Question Answer	the chemistry has pr logically correct incl			hich are relevant to howing that the	some statement(s) which are relevant to the situation, showing			
	to include:	statement of the principles problem is understood. that at lea				that at least a little of the			
		involved and the application of chemistry within the problem is these to respond to the problem. understood.							